6 research outputs found

    Evaluating alternative crosslinking agents in poly(vinyl alcohol) hydrogels membranes

    Get PDF
    Hydrogels are a network of polymer chains with properties that absorb, store and transport solutions. A hydrogel membrane has a permeability that allows influx and excretion. Therefore, it is the ideal material for medicated membranes. This study investigates the crosslinking of poly(vinyl alcohol) (PVA) hydrogel membranes using different agents and explores the usability of the candidate membranes as drug delivery systems. The model protein, bovine albumin serum (BSA), was used to test the stability and controlled drug release rate characteristics of the candidate hydrogel membranes. This investigation also evaluated the stability different crosslinkers for hydrogel membranes. Glutaraldehyde (GA) and an alternative crosslinking method of ultraviolet irradiation with the sensitizer, sodium benzoate (SB), were used to crosslink PVA containing BSA. In GA crosslinked membranes, BSA release diffusion experiments showed 48%, 45%, and 63% recovery of protein at pH 6.5, 7.4 and 8.0, respectively; this confirmed that this system is suited for physiological conditions and controlled release. Although SB has been used for membrane fabrication, our Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) results indicate that UV(SB)-crosslinked films are not suited for drug delivery, despite the release of BSA

    Regional differences in prostaglandin Eâ‚‚ metabolism in human colorectal cancer liver metastases

    Get PDF
    Background: Prostaglandin (PG) E₂ plays a critical role in colorectal cancer (CRC) progression, including epithelial-mesenchymal transition (EMT). Activity of the rate-limiting enzyme for PGE₂ catabolism (15-hydroxyprostaglandin dehydrogenase [15-PGDH]) is dependent on availability of NAD+. We tested the hypothesis that there is intra-tumoral variability in PGE₂ content, as well as in levels and activity of 15-PGDH, in human CRC liver metastases (CRCLM). To understand possible underlying mechanisms, we investigated the relationship between hypoxia, 15-PGDH and PGE₂ in human CRC cells in vitro. Methods: Tissue from the periphery and centre of 20 human CRCLM was analysed for PGE₂ levels, 15-PGDH and cyclooxygenase (COX)-2 expression, 15-PGDH activity, and NAD+/NADH levels. EMT of LIM1863 human CRC cells was induced by transforming growth factor (TGF) β. Results: PGE₂ levels were significantly higher in the centre of CRCLM compared with peripheral tissue (P = 0.04). There were increased levels of 15-PGDH protein in the centre of CRCLM associated with reduced 15-PGDH activity and low NAD+/NADH levels. There was no significant heterogeneity in COX-2 protein expression. NAD+ availability controlled 15-PGDH activity in human CRC cells in vitro. Hypoxia induced 15-PGDH expression in human CRC cells and promoted EMT, in a similar manner to PGE₂. Combined 15-PGDH expression and loss of membranous E-cadherin (EMT biomarker) were present in the centre of human CRCLM in vivo.Conclusions: There is significant intra-tumoral heterogeneity in PGE₂ content, 15-PGDH activity and NAD+ availability in human CRCLM. Tumour micro-environment (including hypoxia)-driven differences in PGE₂ metabolism should be targeted for novel treatment of advanced CRC

    Modern meat: the next generation of meat from cells

    Get PDF
    Modern Meat is the first textbook on cultivated meat, with contributions from over 100 experts within the cultivated meat community. The Sections of Modern Meat comprise 5 broad categories of cultivated meat: Context, Impact, Science, Society, and World. The 19 chapters of Modern Meat, spread across these 5 sections, provide detailed entries on cultivated meat. They extensively tour a range of topics including the impact of cultivated meat on humans and animals, the bioprocess of cultivated meat production, how cultivated meat may become a food option in Space and on Mars, and how cultivated meat may impact the economy, culture, and tradition of Asia

    MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition

    No full text
    Estrogen, progesterone, and HER2 receptor-negative triple-negative breast cancers encompass the most clinically challenging subtype for which targeted therapeutics are lacking. We find that triple-negative tumors exhibit elevated MYC expression, as well as altered expression of MYC regulatory genes, resulting in increased activity of the MYC pathway. In primary breast tumors, MYC signaling did not predict response to neoadjuvant chemotherapy but was associated with poor prognosis. We exploit the increased MYC expression found in triple-negative breast cancers by using a synthetic-lethal approach dependent on cyclin-dependent kinase (CDK) inhibition. CDK inhibition effectively induced tumor regression in triple-negative tumor xenografts. The proapoptotic BCL-2 family member BIM is up-regulated after CDK inhibition and contributes to this synthetic-lethal mechanism. These results indicate that aggressive breast tumors with elevated MYC are uniquely sensitive to CDK inhibitors
    corecore